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In this study, existing primary stability boundary data for flow between concentric cylinders, for the broad
range of radius and rotation ratios examined, were found to be self-similar in a properly chosen parameter
space. The experimental results for the primary transitions to both Taylor vortex flow and spiral vortex flow
collapsed onto a single curve using a combination of variables technique, for both counter-rotating and co-
rotating cylinders. The curves were then empirically fit, yielding explicit analytic formulas for the critical
Reynolds number for any radius ratio ��� and rotation ratio ���. For counter-rotating flows, the primary critical
Reynolds number is determined by a single variable: the ratio of the nodal gap fraction to a known function of
the radius ratio. The existence and influence of a nodal surface is shown experimentally for ��−1.7. For
co-rotating flows, the important scaled variable was found to be the radius ratio divided by the nodal radius
ratio. Comparisons of the resulting explicit stability formulas were made to existing analytic stability expres-
sions and experimental data. Excellent quantitative agreement was found with data across the entire parameter
space.
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I. INTRODUCTION

The formation of the primary instability from unidirec-
tional flow between concentric, rotating cylinders, Taylor-
Couette �TC� flow, has been the subject of extensive study. In
the seminal work by Taylor �1�, linear stability theory �LST�
was used to closely map the stability boundary as a function
of rotation ratio, �=�o /�i, where � is the angular velocity
and the subscripts “o” and “i” refer to the outer and inner
cylinders, respectively. Extensive work has been done to ex-
pand upon LST, by solving LST for various radius ratios,
�=Ri /Ro, �2–4�, where R is the radius, and extending it to
approximate or asymptotic cases of rotation or radius ratio to
develop analytic expressions for the stability boundary
�4–6�.

More recently, several authors have made important
strides toward a complete, analytic functional form for the
critical condition for the entire parameter space involving the
rotation and radius ratios �7–9�. Coles �8� extended an analy-
sis of Taylor’s problem to non-narrow gaps by using a modi-
fied mean angular velocity, defined as an integral mean over
the inviscidly unstable part of the gap. He also showed that
the effect of geometry could be eliminated by proper choice
of variables. However, the resultant implicit formulas err
slightly as � approaches zero and much more broadly at
wide gaps.

Further advances were made by Esser and Grossmann �9�,
who derived analytic expressions for the stability boundary
for all ranges of � and �. Their analysis was based on a
generalized Rayleigh criterion that included viscosity, a func-
tion that accounted for the boundary condition varying
smoothly from a solid to a free surface as counter-rotation
increased and the nodal surface becomes the important
length scale, and an optimization of the location of the initial

instability. This advance resulted in an implicit formula for
the critical Reynolds number based on the inner cylinder,
Rec= ��iRid /��c, in terms of a Reynolds number based on
the outer cylinder, Reo=�oRod /�, and �, i.e., Rec�Reo,��,
that fits experimental data well at narrower radius ratios and
extremely well for co-rotating flows. Here, d is the gap,
Ro−Ri, and � is the kinematic viscosity. However, the accu-
racy of the function decays at wide gaps and in strongly
counter-rotating flows. A better fit was found only after in-
troducing the position of the disturbance as an additional
fitting parameter.

The goal of the present work is to add to the above con-
tributions by showing that the nature of the stability bound-
ary, with respect to a characteristic governing length scale
variable, is similar at all radius ratios. We then determine
simple, explicit formulas for Rec�� ,�� by exploiting this
self-similar functional dependence and analyzing experimen-
tal data for the entirety of the �� ,�� parameter space. The
resulting explicit analytic expressions for the critical condi-
tion provide excellent quantitative agreement with experi-
mental data.

The definition of parameters, derivation of the appropriate
length scales, and the exploitation of the self-similarity of the
stability boundary are described in Secs. II and III. These
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TABLE I. References for experimental data of various radius
and aspect ratios used in the analysis.

Authors �reference� � �

Snyder, H.A �11�, cf. 9 0.2, 0.5, 0.964 �20a

Donnelly, R.J. et al. �12� 0.5 30

Andereck, et al. �13� 0.883 20–48b

Dutcher, C. S. et al. �15� 0.912 60.7

Taylor, G.I. �1� 0.9417 383

aFor the smallest radius ratio, larger for higher radius ratios.
bPrimarily with 30.
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sections also include comparisons to experimental data
�Table I� for various radius ratios and aspect ratios � �where
��height/gap�, and to an existing analytic expression for
Rec.

II. EXPLICIT ANALYTIC EXPRESSION, �	0

In counter-rotating flows ��	0�, it is well known that
there exists a line of zero angular velocity in the base azi-
muthal flow at a radial position RN, where Ri	RN	Ro.
Therefore the Taylor-Couette �TC� geometry can be approxi-
mately thought of as two co-rotating TC geometries, one
with a stationary outer free boundary at the nodal radius RN
and the other with a stationary inner free boundary at RN
�14�. The outer TC geometry is unconditionally stable, so the
governing length scale for instability in the “inner” TC ge-
ometry is a function of the nodal radius length. This nodal
radius is defined by the unidirectional angular velocity field
parameters, and is a function of both radius and rotation
ratios. However, the critical condition cannot be merely de-
fined by the new radius ratio, �N=Ri /RN, because the vorti-
ces formed marginally above the stability threshold are not
confined to the nodal gap. This idea has been introduced by
Esser and Grossmann �9�, who described the nodal surface as
a soft boundary, influenced by viscosity. Both the nodal sur-
face and vortices that extend beyond the nodal gap are dem-
onstrated experimentally in Fig. 1. The flow states seen in the
figures were achieved by slowing increasing Rei while hold-
ing the outer cylinder Reynolds number Reo constant with
�=0.912. The flow visualization images of the �r ,z� plane
have been streaked over 330 ms to show v�r ,z , t�. The digital
particle image velocimetry �DPIV� images have been aver-
aged over 1000 ms, and they demonstrate the magnitude and
direction of the velocity field. Figure 1 shows the gap just
below and just above the instability for Reo=−625 in �a� and
�b�. The flow visualization is done in a plane of finite thick-
ness with d
 approximately equal to 1.6° and as a result, in
�a� the nodal surface is visible from the purely azimuthal
velocity projected into this narrow slice of the r-z plane. Via
a similar projection, the disturbance flow is found in �c� by
subtracting off any contribution from the azimuthal flow in
�a�.

Figure 1 suggests that the appropriate dimensionless
length scale for counter-rotating TC flows is the nodal gap to
original gap ratio, �= �RN−Ri� / �Ro−Ri�. By solving for RN

using the known unidirectional solution for the azimuthal
angular velocity field, the counter-rotation dimensionless
length scale is shown to be �= ����1−1/�N� / ��−1�, where
�N= ���2−�� / �1−���1/2. Profiles of the critical Reynolds
number Rec, scaled with Rec for the limiting case of station-
ary outer cylinder Rec��=0�, appear self-similar for all ra-
dius ratios � when plotted as a function of �. As a result, the
data can be collapsed onto a single curve by scaling the
dimensionless length scale � by a function of radius ratio
f���, found empirically in Fig. 2.

The pseudoempirical explicit formula �Eq. �1�� fits the
available data for the existing range of radius ratios
�0.2	�	0.964� and rotation ratios for counter-rotation
�−7.17	�	0�, and is given by

Rec��,� 	 0�/Rec��,� = 0�

= 1 + 0.025 724� exp�4.772�1 − �/f�����
�/f���

− 1	 ,

�1�

Rec��,� = 0� = 10.812 94/� + 41.450 25/�1 − ��1/2

− 11.675 78, �2�

f��� = 1.03 − exp�− �3.584��� . �3�
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FIG. 1. �Color� Streaked images �top� and DPIV in the �r ,z� plane of TC geometry of �=0.912, �=60.7. The quiver plots represent the
velocity field and the contour the radial velocity. �a� Reo=−625, Rec=348, Rei=0.96 Rec, �=0.327, �b� Reo=−625, Rec=348, Rei=1.06
Rec.�c� Disturbance flow at Reo=−625, Rec=348, Rei=1.06 Rec.

FIG. 2. Collapse of counter-rotating TC data for an expansive
range of � ,�.
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Figure 3 shows the same data on the primary instability,
replotted on the standard Rei�Reo� coordinates, along with
Eq. �1�, for various �, and confirms that the empirical scaling
discussed above does an excellent job of fitting all the data
over the existing many orders of magnitude.

III. EXPLICIT ANALYTIC EXPRESSION, ��0

In the absence of counter-rotation, the dominant length
scale is no longer related to the nodal line of counter-
rotation, and Rec, as defined above, is no longer the best
representation of the driving force for destabilization

of the flow. Instead, the rotation number, R�

= �1−���1+� /�� / ��−1�, defined by Dubrulle et al. �10�,
captures the relevant dynamic driving force in rotating shear
flows in the absence of a nodal surface, which we now take
as our dependent variable. In order to display the data in a
plane that is characterized by self-similarity, a normalized
rotation number, �R�−R���=0�� /R���=0� is used, where
R���=0�=−�1−�� is the critical condition at the stationary
outer cylinder limit. The independent variable, Rec, also
scaled by the stationary outer cylinder critical condition, is
transposed by unity to produce a zero intercept, resulting in
�Rec−Rec��=0�� /Rec��=0�. When the rotation number is
scaled as defined above by the asymptotic values at large
inner cylinder rotation, �1−�� /�, the resultant curves are
similar and given by

R� − R��� = 0�
R��� = 0�

=
�

1 − �

�
1 − exp�−
��Rec − Rec�� = 0��/Rec�� = 0��1���

2���
	�

�4�

1��� = 0.587 225 + 0.013 253/�1 − �� , �5�

2��� = 0.604 419 + 0.069 421/�1 − �� . �6�

The margins of stability for various radius ratios can be
collapsed onto one curve in this plane using the invertible
double exponential form of Eq. �4� with two modes, 1 and
2, capturing the dynamics at small and large Rei, respec-
tively. Inversion of Eq. �4� provides an analytic expression
for the critical Rei as a function of both � and � and is given
in Eq. �7�,

Rec��,� � 0�/Rec��,� = 0� = 1 + �2���ln����,����1/1���,

�7�

� =
1 − �

1 − �/�2 = � �

�N
	2

. �8�

FIG. 3. Comparison of counter-rotating TC data to semiempir-
ical formula �Eqs. �1�–�3�� for an expansive range of � ,�. Data
points to the �left/ right� of the vertical dashes represent primary
transitions to the �Taylor vortex flow/spiral vortex flow� regime. For
�=0.9417, flow type was not indicated on the marginal stability
curve.

FIG. 4. Comparison of co-rotating TC data to Eq. �7�. FIG. 5. Comparison of calculated values of Rec�Reo,�=0.5�.
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� represents an effective dimensionless dominant length
scale for the co-rotation regime. This length scale is the ratio
of the co-rotation inertia stability parameter ��o−�i� /�i to
the Rayleigh inviscid fluid stability parameter and represents
a coordinate transformation over the accessible range of co-
rotation data. As a result, �=1 corresponds to flows with a
stationary outer cylinder and as � approaches infinity Eq. �7�
approaches the corresponding inviscid stability limit �shown
for the narrow gap limit by the dashed line in Fig. �4��.
Figure 4 shows the experimental data are well described by
Eq. �7� over the existing orders of magnitude of Rei and Reo.

Figure 5 shows a representative comparison of the ana-
lytic expressions for Rec given in Eqs. �1� and �7� to both
that of Esser and Grossman �9� and linear stability theory �3�,
demonstrating that this work’s phenomenologically scaled
empirical expressions best capture the data for ��0.5. The
present proposed analytic formulas were compared to those
of Esser and Grossman �9� for experimental data represent-
ing a wide range of � and �. In nearly all cases the present
work shows closer agreement with the experiments; the per-
centage errors with the current formulas are typically two to
four times smaller than with the equations in Ref. �9�.

IV. SUMMARY

For a given rotation ratio and radius ratio, the critical
Reynolds number based on the inner cylinder, Rec�� ,��, for
the formation of the primary TC instability can be explicitly
found from the simple analytic formulas presented in this
paper. Remembering that �=� Reo/Rei, then Rec�� ,Reo�
can be found by solving the expressions numerically. This
paper has also shown that the important dimensionless length
scales, ��� ,�� and ��� ,��, can be used to fully describe
the dependence of the critical conditions on radius ratio. To
the best of our knowledge, these simple explicit formulas
derived from phenomenological scaling of experimental data
provide the best quantitative agreement over the complete
range of � and � of any analytic expression for the primary
stability boundary for TC flows.
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